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Solving Eq. (3.10) for h, we obtain 

h = - 3ad; ac+c5(. . .) 

Substituting the resulting value of h into formula (3.9) and the resulting expression 
for go into formula (3.3). we obtain the first approximation of the required periodic solu- 

tion of system (3.2). The formula 

X*0 (@) = xrt* (@, + 6 (@)Y” + s (@P 

yields the first approximation of the periodic solution of system (3.1). Computation of 

the subsequent approximation is not difficult. The expressions involved are extremely 
cumbersome, however. 
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A procedure for investigating oscillations based on the small parameter method is descri- 
bed. The proposed procedure involves the use of nonlinear difference equations of spe- 
cial form. A mathematical justification of the procedure will be found in fl]. It consists 

essentially in the construction of an ancillary system of differential equations whose 

solution coincides at certain instants with the solution of the initial system. Applications 
considered include cases of resonance in quasilinear systems. A first-approximation in- 
tegral stability criterion for periodic and almost-periodic solutions is derived. 

1, The difference equatfons, Let us consider the following system of dif- 
ference equations of order m: 

X nil - Xn = Py (Xn, ?V, PI (r&=0, 1, 2,. . .) (1.1) 

We assume that the right side is differentiable a sufficient number of times with respect 
to all of its arguments in some domain containing the solution X,. We also assume that 
the parameter l..t is small and that l.& > 0. Let us turn from (1.1) to a more general 
system of difference equations, introducing the ancillary vector function z (z, ~1 such 
that 

2 0% CL) = x7I (n=O, 1, 2, . ..) (I.21 
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System (1.1) can be written as 

2 (z + P? P) - 2 (‘67 P) = P y (‘CT 2 (7, PL), P), ‘1; = np (1.3) 

Y(T 27 P) = Y, (TV 2) + p Y’1 (‘6, 2) + pi?, (7, 2) + . . . 

In order to be able to use the conventional methods of mathematical analysis, we 
assume that z is a continuously varying argument. In addition, we require that system 
of difference equations (1.3) be satisfied not only for discrete values of ‘G = np (n = 

= 0, 1, 2, . . .), but also for all values of 7. As is shown in Cl], system (1.3) has a 
unique solution 2 (7, p) which can be expanded in a series asymptotic as p + 0 , 

2 (z, p) = 2, (T) + pz, (a) + P2Z2 c4+ * * *7 2 (03 f-4 = &I (1.4) 
Series (1.4) generally diverges, but has the following asymptotic property : 

Iw, PJ -ii zj WPI = O(P% p-f0 (1.5) 
i=O 

The asymptotic character of expansion (1.4) is proved in [l]. p. 969. The actual con- 
struction of 2 (7, p) can be effected by the small-parameter method, i.e. by substitut- 

ing (1.4) into (i. 3) and equating the coefficients of the expansion in powers of the para- 
meter CL. This yields the following system of differential equations for 2, (a) : 

dZo 
- = Y(r, 20, O), dz 

2, (0) = X” (1.6) 

If the general solution can be found for system (1.6). then all the vectors 2, (T) can 
be determined successively for an arbiaary initial vector X,, [l]. 

2. The ancillary 8yBtem of differential equation,, System(l.6) 
is not integrable in the general case. In order to able to apply qualitative methods we 
must find a system of differential equations 

dZ 
- = S(z, 2, P), dt 

z = x0, -C=O (2.1) 

satisfied by the solution 2 (z, p) of system of difference equations (1.3). We call sys- 
tem (2.1) the “ancillary system of differential equations”. Construction of the vector 

L!? (T, 2, p) from a given vector Y (T, 2, 1) is exceedingly difficult because of the 
complex analytic structure of S (7, 2, p-I>. Taking a firs&order difference equation as 
an example, we shall show that despite the analyticity of the function Y (T, 2, p) , the 

function S (T, 2, p) has a singularity (a pole condensation point) for p = 0 . 
E xa m pl e 2.1. The solution z (T, p) of the difference equation 

z (z+p, PL) - 2 (T1 P) = - P (T + 1)Y 

is given by a series which converges together with its derivatives for T > 0 , namely by 

For a fixed ‘t the function z (-r, CL) has poles at the points p = - (T + 1) Cl, so 
that the radius of convergence of the expansion of z (a, p) in powers of p is equal to 
zero. It is therefore necessary to seek forms of the solution which differ from asymptotic 

expansion. Solution (1.4) depends on the rn parameter-coordinates of the vector X0. 
Eliminating these coordinates, we arrive at system of differential equations (2.1) where 

s (‘5, 2, p) = s, (T, 2) + ys, (T, 2) i- P”S$ (T, 2) $- * . * (2.2) 
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The vectors Sj (a, 2) can be readily determined from the known vectors Yj (z, 2) 

by differentiation. This yields (for the derivation see, e. g. [I]). 

SO (TV 2) = y, (T1 2) (2.3) 

S, (~7 2); + Gj V,, S,, . . ., Sj_1) = Y; (T, 2) (I = 1,2,3,...) 

Here the projections G, are polynomials in the projections of the already computed 

vectors S, (7, Z), . . . , Si+ (T, 2) and their derivatives. Expansion (2.2) generally 

converges because of the singularity at p = 0. This obliges us to seek other forms of 

analytic representation of the vector S (z, 2, P). 
In particular, there is a way of constructing ancillary system (2.1) with the aid of the 

symbolic operators A, d. We can write 

S(z,Z, p)=Y(z, Z, p)-$Y(z,Z; p)++‘(r,Z, FL)-.. . (2.41 

The expressions for the AkY are computed from system of difference equations(l.3) 

and are of the form 

@h.il (7, z, CL) = @Ii (z + P, z + py (? & P)? P) - @k by z7 P) (2.5) 

@‘r (9, Z, CL) - AkY (7, Z, P) 

Conversely, we have the following expression for Y: 

Y(r,Z, p)=S(.t.Z,p)++dS(~,Z, II)+~d2S(m4+... (2.6) 

where d is the differentiation operator by virtue of system (2.1). 

Pls (z, z, p) = Ddks;; z, P, S(z, z, CL) (2.7) 

3. The method of aucce:rlve lub8tftutionc. System of difference equa- 
tions (1.3) can be solved by a system of successive substitutions similar to the method of 
variation of arbitrary constants. Specifically, we solve the system 

Z=Y(r, z, p) (3.1) 

representing the solution in the form of a system of integrals, 

C = II (.t, z (z), cl)? C = const (3.2) 

Here and below we shall refrain from writing p as an argument of y unknowns. The 

above system can be solved for z (.t) , 

2 (x-1 = 8 (z, c, to9 
a3 (f, c, PL) 

& = Y(z, 8 (z, c, p), p) (3.3) 

To be specific, as our C we can take the initial vector in such a way that 

c = n (0, c, p) (3.4) 

We now replace the constant vector C by the variable vector ,Y. We shall attempt to 
find the solution of system (1.3) in the form 

z (a) = 6 (z, Y (a), P) (3.5) 

where Y (7) is the new unknown vector. Substituting this into (1.3) and expanding in 
powers of p, we find that (3.6) 

P 
a@ (z, Y(z)* p) + D8 0.9 Y (z,, p) 

az DY (z) 
- [Y (t + p) - Y (t)] = PY (Z, 8 (z, Y(e)* P)) + 0 (IQ) 

By virtue of the second condition of (3.3), we find from Eq. (3.6) that 
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y (T + p) - y (q = 0 (p2) (3.7) 

However, it is more aonvenient to construct the system of difference equations for 
Y (7) with the aid of the following formula for Y (z) : 

y (7) = n (TV 2 tq, pL) (3.8) 

In this way we arrive at the system of difference equations 

Y (‘t + FL) - Y (T) = n (T + p, z (T) + PY (% 2 (Q, P), P) - Il (? 2 (r), P) (3.9) 

Next, eliminating 2 (z) from the right side with the aid of (3.5) and recalling (3.7). 
we finally obtain an equation of the form 

Y (r + p.) - Y (.t) = pZQ (‘c, Y (.c)* CL) (3.10) 

We then repeat the entire procedure the required number of times. The order of the 
right-hand side with respect to p doubles with each substitution. The possibility of actu- 
ally effecting the substitutions depends on the possibility of solving system (3.1) in gen- 

eral form, since with subsequent substitutions the systems of differential equations are 
readily integrable by the asymptotic method. Thus, to find the substitution for Y we 
must solve the system of equations dY 

z = PQ (z* Y, P) (3.11) 

In solving system (3.11) we can alter the terms of order p in the right side. In system 

(3.11) we can alter the terms of order r_l” and higher, etc. We can exploit this freedom 
of action in integrating systems (3. l), (3.11). . . . We note that the method of substitu- 

tions is similar to that used by Kolmogorov and Arnol’d to solve differential equations 

PI. 
E x a m p 1 e 3.1. Let us find an approximate solution of the difference equation 

28 (z + p) - 2 (a) = 1”22 (r) (3.12) 

Solving the ancillary differential equation 
dz z c 
- - z2 
dz- ’ c=rqz+ z=1-_ 

we obtain an approximate solution for z. We then make the following substitutions in 

the difference equation : Y (t) 
z (r) = 1 - ry (t) 9 

2 (r) 
y P) = 1 + z.2 (z) (3.13) 

This gives us our difference equation for Y (z) , 

Y (z + cl) - Y (z) = PZY2 (.t) t1 + OL - T)Y (d + P2Y2 (Ql-1 

Solving the ancillary differential equation 
dy ?/3 -- 
dr --I-’ ~+Y(P--)+P%~ 

we obtain an approximate expression for Y (.t) , 

y(t)=c+p$lrl(i-cer)+y%3 lrP(l-cr)+ II ln(l+c.t)+Z 
1 +ct 1 + 0 (P3) 

Substituting y (z) into z (r) (3.13), we obtain a solution of Eq. (3. U) accurate to 
within terms of order pe , inclusive. 

4, Asymptotic integration of er8entirlly nonlinerr o#cillrting 
systems. Let us consider the following system of equations with the small parameter 
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dX 
- = F(b x, P), dt F (t + 237~ X, p) = F(t, X, IL) (4.1) 

We assume that the solutions of system (4.1) are extendible in t, and that the right 
side of F (t, x, p) is differentiable the required number of times with respect to all of 
its arguments in a sufficiently large domain. We also assume that the general solution 
of the system 

x = cf, (6 X0, CL), 0 (0, X0, CL) = X0 (4.2) 
satisfies the condition 

iD (t + 2% x0, 0) - @ (t, X0, 0) (4.3) 

i.e. that all the solutions of system (4.1) become 2n-periodic for p = 0 . An example 
of such a system is the system in standard form 

3; = P’(t, X, ~1, F (t + 2n, X, P) - F (r, X, P) (4.4) 

which is readily amenable to the use of asymptotic methods [3]. All of its solutions are 
constant and satisfy condition (4.3) for p = 0 . 

Let us introduce the notation 
x, = Q, @fin, X,, P) (4.5) 

By virtue of the periodicity of the right side of the system (4.1). we have 

X n+1 = @ (237, x,, CL), @ (2% x,, I.4 = XTI + 0 (P) (4.6) 
Finally, we can write the system of difference equations relating X, and Xn+l as 

X n+1 --xx, =PyM,,P.) (n = 0,1,2, . ..) (4.7) 

PY (X,, P) = @ (2n, X,7 CL) - X, 

The actual construction of the vector function y (X,, p) or the solution of (4.2) for 
t = 2~ can be effected by various approximate procedures. Let us assume that system 
(4.1) is completely integrable for p = 0 . This enables us to use the small parameter 
method [4]. System of difference equations (1.3) no longer contains ‘t explicitly and is 
of the form 

2 (r + P, P) - 2 (r, P) = P y (2 (.t, P)? P) (4.8) 

Y (2, p) = y, (2) + PYY, (Z) + PZY’a (Z) + * * * 

The ancillary system of equations likewise does not contain 7 explicitly, 

dZJdz = S (2, p) (4.9) 

For r = np (n = 0, 1, 2, . . .) the vector 2 (z, /r) assumes values which coincide 
with the values ofX,assumed by solution (4.2) of system (4.1) for t = 21~2. Replacing 
the independent variable in (4.9) according to the formula 

2n-T = pt (4.10) 

we arrive at the system of differential equations 
dZ 

dt= 2n -QCV, P)7 S(Z, f-G = &l(Z) + P-Q V) + p2s2 (2) + l . . (4.11) 

The solutions of systems (4.1) and (4.11) coincide for t = 2nx (12 = 0, 1, 2, . . .). 
The periodicity of system (4.1) implies that if the values of Z, t correspond to the values 
of X, t, then the values of Z, t -I- 2rr; correspond to the values of X, t + 2n. Hence, 
X and Z are related by an expression periodic in t with the period 2~ 
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x = p (4 2, P), p 0 + 2% 2, l-q = P (4 2, p) 

P (t, 2, p) = P, (6 2) + pP, (t, 2) + p2P, (t, 2) + 0.. 

We can solve the equations of (4.12) for Z , 

2 = Q Cc X, P), Q (t + 23~ X, P) - Q (4 X, p) 

(4.12) 

(4.13) 

Q (t, X, 1-4 = Qo (t, Xl + pQ1 (t, X) + p2Qz (t, X) + . . . 
We can find relations (4.12), (4.13) by integrating systems (4.1). (4.11). It is simpler, 

however, to attempt to find a substitution of the form (4.12) directly. This substitution 
reduces nonautonomous system of equations (4.1) to an autonomous system in standard 
form. For p = 0 we obtain 

ape (t, Z) 
at = F(& PO (6 Z), 0), P, (t, 2) f 4) (t, 2, 0) (4.14) 

If system (4.1) is integrable for p = 0, then, substituting (4.12) and (4.11) into (4.1), 
we can determine p,,, P,, . . ., s,, s,, . . . successively. The asymptotic character 

of the resulting solutions follows from Theorem 1 [l]. 
E xa m ple 4.1. Let us find an approximate solution of the essentially nonlinear 

first-order differential equation dz 
---_d 
dt - cost -px 

by the asymptotic method. For p y 0 the equation is integrable and we have 
C X 

X == 1 + c sin t ’ c=1-_LSjny; 2=c, t = 0 

We therefore seek our substitution (4.12) in the form 

x = i + azsjn t + Pl (4 z) + . , 2 = pso (z) + . . . 

Substituting these expressions into the differential equation, we obtain 

SO(~) +$ [(i + CSin t)2pl(t, z)] = -; - z?,qin t 

This yields expressions for s,, (z), pr (t, z) , 
2% cos t 

so (2) = - 3, P1 (tl ‘) = (1 + z sin t)” 

Integrating, we obtain the approximate solution 
C c? cos t 

x= 
et + C sin t + ’ (ept + c sin t)% + ’ (“) 

Note 4.1. For system (4.4) reduced to standard form substitution assumes the 
simpler form x = z + up (t, Z, P), p (t + 2% z, p) = P (t, z, 11) (4.15) 

since the solutions of system (4.4), (4.11) intersect at the instants t = 2nn and since 

their derivatives are proportional to n. We can immediately make the substitution 

x == z + u’p1 (t, Z) + y3P, (t, Z) + pv,, (f, Z)f... (4.16) 

which transforms nonautonomous system (4.4) into autonomous system (4.11). If we re- 
quire that the solution Z (t) of system (4.11) coincide with the solution of system (4.1) 
at the instants t = 2nn. then we can construct a unique ancillary system (4.11). The 

use of ancillary autonomous system (4.11) for asymptotic integration was first proposed 
by Krylov and Bogoliubov [S. 61 and elaborated by Mitropol’skii [3,7]. Substitution(4.16) 
constructed jointly with system (4.11) leads to the asymptotic method of integration. 
Hence, for systems of the form (4.4) the asymptotic method of integration constitutes a 
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particular, but practically convenient method of approximation in which the small-para- 
meter method is applied to the method of point transformations. Neimark [B] pointed 

this out in the case of the first approximation of the asymptotic method called the “aver- 
aging method”. 

N o t e 4.2. The use of difference equations yields a method for the asymptotic inte- 
gration of differential equations of the form 

dX 
dt = F (t, X, ~9 t4, F (t + 2~c, X, p, 0) = F (L X, IJ., ‘3 (4.17) 

A detailed investigation of Eqs. (4.17) containing the slow time pt was carried out by 

Mitropol’skii n]. 
Note 4.3. All of the analytical methods of investigating nonlinear oscillations wiiicir 

we examined, e. g. the reservation method, the method of slowly varying coefficients 
(the Van der Pol method) [9], the method of equivalent linearization, the stroboscopic 
method of Minorsky [lo, 111, the Poincare method [4], etc., are reducible to the solution 
of nonlinear difference equations which are usually of the form (1.1). The use of the 
general method of point transformations [la] has not yet received sufficient elaboration 

for more complex cases. It leads to difference equations of the form 

X nt1 = X, + F (X,, pn, p), F (X,, pn, 6) + 0 

which will not be investigated here. 

5. Obtaining periodic 8olution8. The periodic solutions of system (4.1) 
correspond to the fixed points of mapping(4.6). The initial vector X,, satisfies the sys- 
tem of equations 

Y (X,, p) G Y, (X,) + YYY, (X0) + P2Y2 KJ) + * * * = 0 (5.1) 
The search for a periodic solution by asymptotic methods leads to ancillary system 

(4.11). The constant solutions of system (4.11) correspond to the periodic solutions of 

system (4.1). The initial vector X0 which determines the periodic solution satisfies the 
system of equations 

s (X,, l-t) = S, (X,) + CL& (X0) + P2S2 (&J + l l * = 0 (5.2) 
Formulas (2.4)-(2.7) relating Y and s imply that Eqs. (5.1) and (5.2) are equivalent. 

For this reason, the periodic solutions provided by the asymptotic method and the method 
of Poincark [4] can be made to coincide with any degree of accuracy desired. This was 
shown in [13] by direct computation for the first approximations. It is important to note 

that, having constructed Eqs. (5.2) defining the initial values for the periodic solution, 
we can construct ancillary system (4.11) without referring to system (4.1). By virtue of 
its uniqueness, system (4.11) can be arrived at by the asymptotic method [S--7], which 
makes it possible to investigate the stability of the periodic solutions. The Poincare 
method can therefore be used to investigate transient processes, This has usually been 

done in the neighborhood of the fixed point [12]. Specifically, (2.3). (2.4) yield the 
approximate formula 

S(Z, P) = 1.5Y(Z, p)-0.5YP(2+- p’k”(Z, p), p) + O(p2) = 

= y’(Z, cl) -0.5/A Dyr; lJ) 92 (2, p) + 0 (j_L”) (5.3) 

E xa m ple 5.1. Let us consider the stability of the solutions of the equation 

.z’* + Gx = pF(t, x, z’, p), F (t + 2x, x, I’, p) sz F (t, x, x’r p) (5.4) 

in the first approximation in the resonance case n = 1, 2, 3,... 
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Stipulating that 
x = a, x’ = b, t = 6 

we arrive at the approximate solution 

= To (t) + -f- 
ia 

z(t) j F (~9 zo W, 20’ (r), ~1 sin n (t - r) dr + 0 (pz) 

0 

50 (t) E U COS nt + bn-1 sin nt 

Substituting in the value t = 2n we obtain the new initial values 

al G x (2a-c) = a + p,Lp (a, b) + 0 (pz), bl s x’ (2x) = b + pQ (a,b) = 0 (/J’) 

where 2n 

P (a, b) = - $ 
s 

F (t, x0(t), z’~ (z), 0) sin nt dr 
0 

Q (a, b) = f F (z, q(t), xi (z), 0) cos tat dz 

The difference equations for the coordinates of the point of intersection of the integral 

curve with the planes t = 2nn are of the form 

a~+i - an = pp (a,, b,) + 0 W2), b,+l - bn = PQ (a,, b,) + 0 b2) 

Hence, the differential equations for the slowly changing variables a, b assume the 

form (4.11). 
2 = 2G P (a, b) + 0 (p2), 

db 
z = -& Q (a. 4 + 0 (~“1 (5.5) 

If there exists a simple solution a = a,, b = b, of the equations 

P (a, b) = 0, Q (4, b) = 0 

then Eq. (5.4) has a periodic solution. The stability of solutions in the first approxima- 

tion is determined by the stability of system (5.5) linearized for a = a,, b = b,, 

d(a--a,) p ap (ao, bo) 

dt 
=- 

~JC aao (a-Pa)+ Zi abo 
’ aP(ao’ bo)(b _ bo) + 0 (~2) 

d (b - bo) 1-1 aQ (~0, bo) CL aQ (~0, bo) 
dt =2fi au0 (a-aO) + rt abo (b - bo) + Q (~~1 

The solutions are asymptotically stable if the roots of the characteristic equation 

ap (ae, bo)/aao -- h 

aQ (~0. bollaao 
ap (a,; ;;;ty h / = 0 

aQ (ao, o 
(5.6) 

have negative real parts. This conclusion was arrived at in [4], p. 80. The first approxi- 
mation using difference equations actually coincides with the stroboscopic method of 

Minorsky [9, lo], who confines himself to the first approximation (as we are doing in 
this example) and usually converts to polar coordinates on the phase plane. Quite natu- 
rally, the first approximation of the asymptotic method [S-7] (usually called the “ave- 
raging method”) leads to system (5.5). as does the Van der Pol method [ll]. p. 76. 

6. The complex resonance caue. Let us consider the quasilinear system 
dX 
- = AX + pF(t, x, tL), dt F(t+xJv x, p)=F(t, x, p) (6.1) 

We assume that all the solutions of the system are periodic with the period 2n for 

~1 = 0 , i.e. that 
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exp { A2n) = E (6.2) 
Solving system (6.1) with the initial vector X,-, , we obtain the solution 

X (t) = eA’Xo + p s e -4(t-r) P (z, eA+ X0, p) dz + 0 (p2) 
0 

System of difference equations (4.7) becomes 

(6.3) 

xn+l - X, = p T epA7 F (z, eAr X,, 0) ck + 0 (p2) 
i, 

(6.4) 

Equating the right side in (6.4) to zero, we obtain equations for finding the initial 
vector X, which determines the periodic solution. This periodic solution is asymptotically 

stable if the solution Z = X, of the system of differential equations 

2x 

dZ P _- 
dt- 2n .e \ -A’ F (z, eAs 2, 0) dx (6.5) 

is stable. Ii 

This solution is in turn stable if all the eigenvalues of the matrix of the Jacobian 

J = D ‘ieBA’ F (z, eAs Z, 0) dt/DZ (6.6) 
0 

have negative real parts. If the matrix of (6.6) also has zero eigenvalues with element- 

ary first-degree divisors, then the periodic solution of system (6.1) is stable in the first 
approximation. In doubtful cases the problem of stability can sometimes be resolved by 
considering system (6.5) directly. 

E x a m p 1 e 6.1. Let us investigate the stability of the periodic solution of the equa- 
tion I” + 5 + px2 sin t = 0 (6.7) 

Equations (5.5) are of the form 

;;- ; (~2+3b2)+O(~2), $=-$ub+O(p2) --_ 

We obtain a0 = 0, b. = 0 for the periodic solution. Equation (5.6) has a multiple 

zero root. Application of the small-parameter method in its usual form [4] requires 
computation of subsequent approximations. On the other hand, it is sufficient to consider 

the integral curves of system (6.8) on the plane ab to conclude that the solution a = 0, 
b = 0 of system (6.8) (i. e. the periodic solution x = 0 of Eq. (6.7)) is unstable. The 
solution 5 = 0 stable in the first approximation is unstable when subsequent approxima- 
tions are taken into account. 

7. The integral stability criterion (in a form different from that used 

in [14-163). Let us consider the oscillations of a system described by the generalized 

coordinates ql,. . . ,qn. We assume for simplicity that conversion to the principal coor- 
dinates is possible for the unperturbed system. The kinetic potential is of the form 

L(q,, qr’, wt, p) E T - II = (7.1) 
i=l 

Let us assume that p. > 0, where p is a small parameter, and that the periodicity 
condition 
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is fulfilled. 
We shall consider the nearly-resonance case when the perturbation frequency o and 

the proper frequencies 0. of the unperturbed system (p = 0) are in rational ratio. We 

assume that O. r-pi (7.2) 
w -N’ 

wi2-vi2= O&J, vi= q (i=i, . . . . n) 

Here the pi are nonnegative integers and Nis a sufficiently large positive number. 
We obtain the following expression for the kinetic potential : 

L (Qidi, ot, p) = gi (!7i2 - %24i2) + I”~(% Qi’, ot7 P) (7.3) 
%=I 

T1 4.2 
2 (a, Qi’, of, PI=4 (QiJli’,@f,P) + p-l2 -+- (Vi” - Oi2) 

i=l 

All of the solutions of the unperturbed system (p = 0) with the kinetic potential L 
(7.3) are periodic with the common period $” = 2&~-l. The Lagrange differential 
equations now become 

r 

d 81 a1 

I 

Pi0 
qi” -t- viaqi = - I-1 -- -- 

dt aq; z 89, ’ 
Vi = 7 (i = 1, 2, . . ., n) (7.4) 

In the zeroth approximation we obtain the generating solution 

4io (4 = U~ cos v;t + (bs / vi) sin v+ (7.5) 

Here ai, bi are the initial values of qi (t), qi’ (t) for t = 0. Let us compute the 

new initial values ail, bi, after the period 7’. Applying the small parameter method, 

we obtain 

4i (t) = QiO (t) - 

t 
P d 81 

yi -zaqi.-q o ai] s;nv,(t--r)dz+O(p2) (7.6) 
0 

The expression in square 

solution qio (T), qio’ (‘6). 
the point transformation 

brackets in the integrand is to be computed for the generating 
We indicate this by means of the subscript “. We now have 

(7.7) 

ai1 = at + ClTPi (aj, bj) + 0 (p2), bil = bi + pTQi (aj, bj) + 0 (~‘1 
where T 

Pi (aj, bj) = + S[-& $L - $1 sin viz dz, 
2nN 

i z 0 
T = w (7.8) 

Qi(aj, bl)=-:j~~~-~]ocosviydI. p=O 
0 

z 

Integration by parts makes the extraintegral terms vanish because of the periodicity 
of the integrands, and we have 

T T 

Pi(aj, bj)=--$S[$COSViT+$T] d~=--$l [$I dr (7.9) 
z z t 0 

0 
i 0 

Qi(q, b;)=-4j~~visin~~~+~cosv~~, 
0 

dz= f 
0 z 

‘4 

[[&]odz 
0 

Let us introduce the ancillary function 
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The above equation is fulfilled, since the relation 
T n 

sz 
, [qioe2 (r) - vi2qio2 @)I0 dz zz 0 

0 is1 

(7.11) 

is fulfilled for the generating solution. 
Here h (~j, b,) is the average value of the kinetic potential L of the perturbed sys- 

tem computed for unperturbed solution (7.5). Since N in ?’ can be arbitrarily large, we 
can assume that T 

A (q, bj) = h& s L (c&o (z), &o’(z), or, p) dz, A = 0 (p) (7.12) 
0, 

As our generating solution $0 (r) we take the expressions defined by formulas (7.5). 

These define harmonic oscillations with frequencies vi rationally commensurate with 

the perturbation frequency 0. Mapping (7.7) becomes 

ai, = ai - Tgt-O(P2), bil= bi + T $ + 0 (p2) (7.13) 
t I 

The corresponding system of differential equations (4.11) is canonical in the first 
approximation, dai 

-= 
dt 

-$+0(p), -f&$+0(p) (7.14) 
i 2 

The equations for determining the periodic solution in the first approximation are 

aA (aj, $) 
= 0, 

aA (aj, bj) 

8ai isi 
= 0 (i=i,. . ., n’ (7.15) 

Hence, the initial values uio, bio which determine the periodic solution are the coor- 

dinates of the fixed point for the function A (al, bJ. Equations (7.14) have the energy 

integral A (al, b,) = const + 0 (p2) (7.16) 

The surfaces with Eq. (7.16) are closed in the neighborhood of the fixed point ato, bi, 
in the phase space of the variables aj, 61 if the function A (ai, b,) has either a mini- 
mum or a maximum at this point. Otherwise surfaces (7.16) are not closed. 

Theorem. (The integral stability criterion). Let us compute the 
average value h (uf, bj) of the kinetic potential of the perturbed system (p # 0) 
along the periodic solution of the unperturbed system (~1 = 0) as a function of the ini- 

tial values ai, bi. If the function A has either a maximum or a minimum at the point 

Q, b is , then this point determines the periodic solution stable in the first approxima- 

tion. The other fixed points require special consideration. 
Example 7.1. Let us consider the system with the kinetic potential 

L (x, z’, t) = 1/2 (~9 - 33 - uLhz2) + yxx’ sin 2t 

The corresponding differential equation is a Mathieu linear differential equation, 

x” + (i + ph + 2u cos 2tp = 0 (7.17) 

For p = 0 this equation has the solution 

z,, (t) = a cos t + b sin t 

Let us compute the average value of the kinetic potential for this solution, 
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2x 

s 
L (20 (z), m,’ (t), z) dT = + [- (h + 1) u2 + (I- h) P] 

0 

At the fixed point a = 0, b = 0 the function A (a, b) has a minimum for h < -1 

and a maximum for h > 1. For -1 < h < 1 the point n = 0, b = 0 is a saddle point. 

Hence, for 1 h 1 > 1 we have a stable zero solution of Eq. (7.17) and for I h. 1 > 1 an 
unstable zero solution. For h = * 1 the fixed point is defined ambiguously, which im- 

plies the existence of a family of periodic solutions. The implications of this example 
agree with the known results of [17]. 

Note 7. 1. The integral criterion can be broadened considerably to cover systems 
canonical in the zeroth approximation. It bears a close relationship to perturbation the- 
ory [18]. Let us formulate ape of the implications without proof or elaboration . We con- 
sider a canonical system of differential equations with the Hamiltonian H, 

H z H (tl qjt PIT P) (7.18) 

which is almost periodic in t and doubly differentiable with respect to all of its argu- 
ments. Let the generating canonical system 

~HO 
!I,’ = aps * 

~HO 
p,’ = .- q 9 Ho=H(t,qi,P,,‘) (a=‘,...,‘) (7.19) 

have the generating solution 
q, = q; (t, ajP $1, ps = P,; (4 ajy bJ (7.20) 

where aj, bj are the initial values of ‘Jjt Pj for t = 0. Taking aj, bj as our new variables 
and assuming that the averaging method [19] is applicable to the system of equations 

dn, _ a(H-Ho) db, a(H--Ho) 

dt -- ab, ’ -z=- % 
(,s=I....,n) (7.21) 

we conclude that the solution of the system with the Hamilronian H (7.18) is stable 
with respect to the parameters aj, bjt if the function A (ajt bj) , 

‘I’ 1) _ 

A (aj, bj) = lim + 
T-CC siz Ps,Q SO - H(tt q,O. PjOs P.) 1 dt 

0 S=l 

has a minimum or a maximum for these values of aj, bj . 
The stability criterion is also applicable to the analysis of the stability of almost- 

periodic solutions. The ,parameters can bd arbitrary constants which do not necessarily 

coincide with the initial conditions. 
E xa m ple 7.2. Let us use the integral criterion to find the stability condition under 

combination resonance of the solutions of the system 

ql” + 012ql - 2yq, coswt = 0, qz” + o.32q2 - 2pq1 COSOt = 0, @ = 01 + 0, 

The system is canonical with the Hamiltonian 

H (qjy Pi* t) = ‘/‘2 (PI’ + o,Jq,? + pz? + OZ”QL2) + 3pq,q2 cosmt 

We choose our generating solution 

41 = Al ~0s (vlt + al), Q? = A, cm (vZt + a,), 01 - VI = 0 (P), 02 - Vn = u(p) 

such that the exact relation 

Y1 + y2 = 0, 0 = 0, + 02 - (01 - VI) - (02 - “2) 

is fulfilled. 
The average value of the kinetic potential is of the form 
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A (Aj, aJ = l/a [A&o12 - ~1~) + 2pAlA2 COS (al -k a,) -k A,2(~,2 - +)I 

If 
@12 - Q2) (@22 - %2) > P2 

then a maximum or a minimum occurs at the point AI = A, = 0 corresponding to the 

zero solution. 
The above condition can be simplified into 

W~,((% - VI) (02 - y2) > IL2 + ow 

Varying vi, Ye, we obtain the largest stability domain for 

01 - vr = o2 - v2 

The stability domain is defined by the inequality 

~0-~1--02I>--- 
J&G 

Note 7.3. We note that this result is correct despite the fact that the averaging 
method is not directly applicable PO] to Eqs. (7.21) obtained in the course of its deriva- 
tion. We refer the reader to interesting paper pl] , which concerns averaging in canon- 
ical systems. The example is analyzed by another method in PZ]. 

8. Stability of ay:temr with friction. Let the system considered in Sect. 
7 be acted on by friction with the Rayleigh dispersion function 

F L= ‘/&elql’Y + 82q1’2 + . ..+ Enqn”), Ej > 0 (8.1) 

Equations (7.4) now become d dl dl 
qi” + PLe,qi’ + ‘i2Qi = - P Jj- agi’ - q 1 (8.2) 

Making substitution (7.5) and converting first to difference equations and then to dif- 
ferential equations, we obtain the first-approximation equations 

rJni an aR dbi an aR 
dt - -6-G y 

- 
Z=aaai -& (3.3) 

where 
1 

* (Oj, bj) = lim f = L (‘lie (T), Qio’ (T),Ot, 11) dr, 
s 

R (aj, bi) = f i q (ai” + bi?) (S.4) 
T+OJ 

0 i=l 

Equations (8.3) enable us to introduce the transient processes. In order to obtain the 
almost-periodic or periodic solutions we must equate the right sides of (8.3) to zero. 
To investigate the stability of the resulting aju, bjo in the first approximation, we intro- 
duce the matrices P, Q, 12, L with elements computed at the point ajot 6jo 

a3i a?12 a?n 
p~;~ = acl,;ans 7 qlis = i_?a,.ab 1 ‘iis = ,?b,,abs ’ 

, =Cler;~ 
ks 2 ks (8.5) 

, b 
Here 6hs is the Kronecker delta: b,, = 1, S,, = 0 (x # ,s). 
The characteristic equation of the system in variations is of the form 

R 

?bE _1- L - Q (8.6) 

In this block matrix E represents an identity matrix and Q’ the matrix adjoint to (I. 
In the case of simple resonances when only one of the characteristic frequencies of the 
system for n = 0 is equal to the double perturbation frequency, the necessary and suffi- 
cient condition of asymptotic stability follows from the inequality 
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P 
Det Q-L >o 

Q'fL R !I (8.7) 

Example 8.1. Let us investigate the stability of oscillations with the kinetic poten- 
tial L , L = l/2 (~2’~ + 2~‘” - 0~29 - 0~2~2) + p&y + yq sin wt, 0 CZ 201 

and the Rayleigh dispersion function 

F = I’/& Err’2 + &,I/“), El> 0, E2 > 0 

We obtain the following differential equations of the zeroth approximation : 

x” + 0.250~~ = 0, y”+ 022y = 4 sin ot 

As our generating solution we take the expressions 

2br 
Z=aalcos+ t+;sin +t, y = a.2 COS C&t + bp sin w2t + o22 Q a2 sin wt o, 

2 

From formula (8.4) for o, # ol, 20, # or, o2 # 0 we obtain 

4012 
A = $ ($ - UP) + y (\I - 7 j + 2$z:2wl) 

Stability condition (8.7) becomes 
p2.Q (02 - 4012) 
4 402 L 

p%" p2c242 > o 

+ /i - 402 (02% - UP) I 

After some simplifying operations.it becomes the inequality 
p2c292 

4 (0 - 243 + p2a2 - (g fo22 _ 02) > @ 

As is clear from this example, it is not necessary to construct the complete differen- 
tial equations of motion in order to investigate stability. This makes the integral crite- 
rion a convenient means of analyzing the stability of the oscillations of complex mechan- 
ical systems. 

8. The canonical difference equationa, Let us apply the asymptotic 
method [5-71 to the canonical system of differential equations with the small parameter 

f-t. * aH !ls =lJ,,s, Ps’ = - p E 7 If= H(qj, PI, t) (s=l,. . ., n) (9.1) 
R 

where the Hamiltonian f? is differentiable a sufficient number of times and is 2n-perio- 

die in t . 
We begin by introducing the general solution of system (9. I), 

q9 = ups (t, aj; bj, P). ~8 = $g (rl ajt bj, CL) @=I,. . ., n) (94 

with the initial conditions 
qs = a,, ps = b,, t = u (s==l,...,n) 

Next we find the mapping given by solution (9.2) after the period 2n, 

a a,kil = ms (ajk, bjkr CL), bs,k+l = yy, (ajg, bjr;, p) (k=ibf 1, 2,. . .) (9.3) 

Q’S (aj, bj, FL) E qs (2~7 aj, bj, p), ys (aj, bj, p) E $8 (2~7 a~, bj, IJ) 

Since system (9.1) is canonical, we have the relative integral invariant (see [23], p. 

302) 
1 i Y?,80S = 5 i bsk6ask (9.4) 

Ch,l s=l c!k s=1 

Here C, is a closed contour in &z-dimensional space obtainable from c0 by means of 
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k successive mappings (9.3). Difference equations (9.3) satisfying condition (9.4) will 

be called “canonical” equations. Let us introduce an ancillary system of differential 
equations of the form (4. 9) for difference equations (9.3). Its solution for r = ,+ (k = 
=o, 1, 2, . .) has a relative integral invariant. Taking the limit as l_t --f U , we infer 
from this that the ancillary system has a relative integral invariant of the form 

_ n 

k=l 
and is therefore canonical. Making substitution (4.10). we obtain 

‘Hr (Ujy Vjv l‘) 
U8~=p----, 

=, (~~9 v , P) 

3V 
v; = - p 

aus 

(s=i,...,n) (9.5) 

s 

This means that there exists a canonical transformation of variables 

48 = ‘S + 21 p’uk(Uj, Vj, t), ps = V, + 2 ~‘Vk(Uj, Vi, t) (9.6) 

k k 
which transforms canonical system (9.1) into canonical autonomous system (9.5). Thus. 
by applying the asymptotic method to the canonical system we can obtain the ancillary 
autonomous system in canonical form. This fact is proved in a different way in [24]. 

Note 9.1. It is possible to seek a function w (qj, Uj, t, p) which determines the 
canonical transformation in accordance with the formulas 

aw aw 
vs=zq~ P,=- 87 (s=l,...,n) 

s 

and is such that the function HI does not contain the time t , 

Hl=H-g, 
aH1 
at’0 (9.8) 

10, Complex rs8onrncs in rutonomou8 ay8teml. Let us consider the 
system with n + 1 degrees of freedom 

Xi” + Oi’Xi = /Jf~fi (Xj, Xj’) (i=O,l,...,n), q#O (10.1) 

where the ratio of any two frequencies oi is a rational number. By replacing the inde- 
pendent variable we can reduce system (10.1) to the case where all the oi are positive 

integers with the largest common divisor equal to unity. Let us find the solution under 
the initial conditions 

5,=u, x0 = 0, Zi = yi, Xi’ = zi (i =I, . . ., n), t = 0 (10.2) 

For p = 0 all the solutions of (10.1) are periodic with the period 27~. Let us find 

(for Jo > 0 ) a mapping which is effected along the trajectories of system (10.1) from 
the instant t = 0 to an instant t* close to 2~ at which ro’ = 0. It is more convenient 

in practice to find the preliminary values of the variables at the instant 2n. Knowing 
that for p =O in the zeroth approximation we have 

zg0 (t) = u cos o,t, zc(t)=y,coswit+~sinqt (i=i,..., IZ) (10.3) 
we can apply the small-parameter method to obtain 

xi(t)=x~o(t)+~x*~(t)+~(~2) (i=O,i,...,fi) (10.4) 

q(t) = &ifi(qo(@, z’jo(Z))sinq(t--)d~ 
%O 

Using the ellipsis to denote terms of order p.*and higher, we obtain the following values 
for t = 2n : 
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x0 (24 = u + po1 (2n) + * * ., zo’ (an) = pxOl’ (24 + . . . 
xi (24 = Yi + CLZil (23.q + . . ., Xi' (24 = zi + /.LL2’i1 (23-c) + . . . 

(10.5) 

(i = 1, . . ., n) 

Now let us move along the trajectories to the instant t” at which x0’ (t‘) = 0. To this 
end we convert from (10.1) to the first-order system 

xi: Z u u * zz.7 - 
i’ i Oizxi + P/i (‘lt ‘i) 

Let us take uOas the independent variable. This yields the system 

dx. 
1=_ 

24. du. - oi2xi + pf, (“j, uj) 

duo - ao2xo + ;fo(xj, uj) ’ 
2z 
duo - OOQO + pLfo(y, q 

(IO.(i) 

Solving this approximately under initial conditions (10.5) up to the value u. = 0, 
we obtain 

To (t*) = U + px,r (an)+..., iTo’ = 0, .f* = 2n + -& x.01 (24 + * * * (1'J*7~ 

2; (t*) = Zi + tl II x’il (2n) 
ol.2,. --‘-x.,,(2n)] 
O@?U . 

+ . . . 
Formulas (10.7) define the point transformation of the values of U, yi, zi into the 

analogous values at the instant t’ which itself depends on u, yi, zi. Let us convert to an 
ancillary system of differential equations of the form (4.11). From (10.4). (10.7) we 

obtain the first-approximation equations 

sin o,z dr + 0 (p*) 

0 

dy. 
1=_ 

ds 

In this fashion we have replaced the system of initial order 2n + 1 by an autonomous 
system of order 2n f 2. The new system can be conveniently handled by approximate 
methods by virtue of the small factor in its right sides. The variable S denotes the local 

time along each trajectory. It is related to t by the differential equation 
2x 

dl 
- - 1 -A 1 [fol ~0s war dr + 0 WI ds 

0 

(10.9) 

The expressions in square brackets are computed for generating solution (10.3). 
The periodic solution can be found by equating the right sides of system (10.8) to zero. 

We shall investigate stability by means of equations in variations, which in this case are 
linear differential equations with constant coefficients. 

E x a m p 1 e 10.1. For the system of differential equations 

x0 ” + n2Xo = ~Ji’JZo’, x1” + m2xr = -pxo2x1’, p > 0, m # n 

Eqs. (10. 8). (10. 9) become 
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du dz _-- 
dt - yau (y2 + z’m-‘), $ = 1+ 0 (t4, 

.a_ CL 
dt - 

- $- yu2, dt=--TZUz 

The above system becomes readily integrable once we have made the substitutions 

p = u2, q = y? + z2me2, 
dp dq --- dt-; pq, --+pq dt - 

Without solving the equations we note that there are two families of periodic solutions, 

the stable family 
X0 = 0, Xl = y 120s mt + zm-1 sin mt, p=o 

and the unstable family 
20 = u co9 nt, I1 = 0, q=o 

All of the solutions become the stable periodic solution in such a way that 

p+q=C, 23 + y2 + z2m-2 = C 

The equations yield the approximate solution 

5s (t) = Cl (1 + Cze”.s~Cl*t )_I” cos (n t + C,) 

zl (t) = C1 (1 + CZel e-“.51*c1’t )-‘/2sin (mt + Co) 

containing four arbitrary constants. 
Resonance in system of differential equations (10.1) facilitates their analysis. 
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ON THE NOTION OF A HOLLOW BODY FILLED WITH VISCOUS 

LIQUID ABOUT ITS CENTER OF MASS IN 

A POTENTIAL BODY-FORCE FIELD 
PMM Vol.33, No3, 1969, pp.431-440 

A. I. KOBRIN _ _ 

(Received %&?I% 2, 1968) 0 

We consider the motion of a hollow solid body whose cavity is completely filled with a 
viscous liquid, assuming that the product of the Reynolds and Strouhal characteristic num- 
bers for the flow of the viscous fluid in the cavity is small. We then show that the prob- 
lem can be handled by methods used to investigate systems with a small parameter 
accompanying the higher derivatives and develop an algorithm for constructing an asymp- 
totic expansion of the corresponding simultaneous system of Navier-Stokes and ordinary 


