Periodic solutions of systems with lag 401

Solving Eq, (3, 10) for 2, we obtain
dy
h——:-—mc +e3(. ..}

Substituting the resulting value of & into formula (3, 9) and the resulting expression
for y° into formula (3. 3), we obtain the first approximation of the required periodic solu-~
tion of system (3, 2), The formula

z° (8 = 21" 8) + & (B)y° + & (9)y°
yields the first approximation of the periodic solution of system (3, 1), Computation of

the subsequent approximation is not difficult, The expressions involved are extremely
cumbersome, however,
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A procedure for investigating oscillations based on the small parameter method is descri-
bed, The proposed procedure involves the use of nonlinear difference equations of spe-
cial form, A mathematical justification of the procedure will be found in [1]. It consists
essentially in the construction of an ancillary system of differential equations whose
solution coincides at certain instants with the solution of the initial system, Applications
considered include cases of resonance in quasilinear systems. A first-approximation in-
tegral stability criterjon for periodic and almost-periodic solutions is derived,

1, The difference equations, Let us consider the following system of dif-
ference equations of order m:
Xpu — Xn =p¥ (Xp, np,p) (n=0,1,2..) (1.1)
We assume that the right side is differentiable a sufficient number of times with respect
to all of its arguments in some domain containing the solution X ,. We also assume that

the parameter p is small and that W >> 0. Let us turn from (1. 1) to a more general
system of difference equations, introducing the ancillary vector function Z (T, ) such

that Z (np, w =X, (n=0,1,2..) (1.2)
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System (1, 1) can be written as
Z®+pp)—Z(rp)=p¥(r,Z(t,u,n, t=m (1.3)
Y(v,Z,p) =Y (t,2) +p ¥, (1, 2) + 2%, (v, Z) +...

In order to be able to use the conventional methods of mathematical analysis, we
assume that T is a continuously varying argument, In addition, we require that system
of difference equations (1, 3) be satisfied not only for discrete values of T = npu (n =
=0,1, 2, ...), but also for all values of T, As is shown in [1], system (1, 3) has a
unique solution Z (T, W) which can be expanded in a series asymptotic as u — 0,

Z(t,p) =2 (1) +pZ (0) + 0% ()+ .., Z0,m) =X, (1.4)
Series (1. 4) generally diverges, but has the following asymptotic property ;

3
1 .
|Z(r, ) — 2 Zj(T)W‘ZO(l"kﬂ)a p—0 (1.5)
=0
The asymptotic character of expansion (1, 4) is proved in [1], p., 969, The actual con-
struction of Z (T, u) can be effected by the small-parameter method, i, e, by substitut-
ing (1. 4) into (I, 3) and equating the coefficients of the expansion in powers of the para-
meter [l This yields the following system of differential equations for Z, () :
dZ -
d,ro :\F(T, ZOv O)v ZO(O):XO (1'6)
If the general solution can be found for system (1, 6), then all the vectors Z; (1) can
be determined successively for an arbitrary initial vector X, [1].

2. The ancillary system of differential equations, System(1l.6)
is not integrable in the general case, In order to able to apply qualitative methods we
must find a system of differential equations

L —Sez,p). Z=X, T1=0 (2.1)
satisfied by the solution Z (7, 1) of system of difference equations (1, 3), We call sys-
tem (2, 1) the "ancillary system of differential equations”, Construction of the vector
S (7, Z, n) from a given vector ¥ (1. Z, p) is exceedingly difficult because of the
complex analytic structure of S (1, Z, p). Taking a first-order difference equation as
an example, we shall show that despite the analyticity of the function ¥ (1, Z, p) , the
function S (t, Z, p) has a singularity (a pole condensation point) for p = 0,

Example 2,1, The solution z (T, i) of the difference equation

2(vHpp) — 2 (T, 0) = —p (v + 1)
is given by a series which converges together with its derivatives for T > 0 , namely by
—_ B I i .
S N ey e N TR ST
For a fixed T the function z (7T, p) has poles at the points p = — (v + 1) n7, so

that the radius of convergence of the expansion of z (T, p) in powers of W is equal to
zero, It is therefore necessary to seek forms of the solution which differ from asymptotic
expansion, Solution (1, 4) depends on the m parameter-coordinates of the vector X,.
Eliminating these coordinates, we arrive at system of differential equations (2, 1) where

S(t,Z,p) =S, (t, Z) + S, (1, 2) 4- w85 (v, Z) + . .. (2.2)
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The vectors §; (v, Z) can be readily determined from the known vectors ¥; (t, Z)
by differentiation, This yields (for the derivation see, e, g. [1]),

Sy (v, Z) = ¥, (v, 2) (2.3)
S, (1,2), + G (89, Sy, - . ., Sj0) =¥, (1, 2) 1=123,..)

Here the projections @, are polynomials in the projections of the already computed
vectors S, (T, Z), . . ., S;j— {T, Z) and their derivatives, Expansion (2.2) generally
converges because of the singularity at p = (. This obliges us to seek other forms of
analytic representation of the vector S (1, Z, W).

In particular, there is a way of constructing ancillary system (2, 1) with the aid of the
symbolic operators A, d. We can write

A A? 5,
S(T7Z7 }L)Z‘F(T, Z7 ”)‘T‘F(r,zv H)+T T(T, Z7 l“‘)~‘ . (2'4)

The expressions for the AYY are computed from system of difference equations(1,3)
and are of the form

Oy (1,2, W) =P (v + 1y, Z+pY(r,2Z,0),p) — Dy (v, Z, ) (2.9)
Oy (1, Z, p) = AFY (1, Z, p)

Conversely, we have the following expression for ¥:
W(t,Z,0) = S(v, Z, p) + 4 dS (v, Z, p) + 5 28 (v, Z, p) + . .. (2.6)
where d is the differentiation operator by virtue of system (2. 1,
&S (v, Z, p) = D—di—“z—”)S(r Z, W @2.7)

3, The method of successive substitutions, System of difference equa-
tions (1, 3) can be solved by a system of successive substitutions similar to the method of
variation of arbitrary constants, Specifically, we solve the system

dz
=Y 2, W 3.1y
representing the solution in the form of a system of integrals,
C =1 (%, Z(x), ), € = const (3.2)

Here and below we shall refrain from writing p as an argument of 5 unknowns, The
above system can be solved for Z (1) ,

90 (7, C, n)
t—6@ Cow 2BEE yremamw 69
To be specific, as our ¢ we can take the initial vector in such a way that
C=T11(, C p (3.4)

We now replace the constant vector ¢ by the variable vector Y. We shall attempt to
find the solution of system (1, 3) in the form

Z(t)=08(t, Y (1), p (3.5)
where Y (1) is the new unknown vector, Substituting this into (1, 3) and expanding in
powers of p, we find that (3.6)

98 (1, Y (1), D8 (v, Y (1),
GO0 (DY((T)) B 1y (¢4 w) — Y (0] =¥ (1. 8%, ¥ (2), w) + 0 ()

By virtue of the second condition of (3, 3), we find from Eq. (3.6) that
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Y (T+p) —Y (1) = 0 @) (3.7)
However, it is more eonvenient to construct the system of difference equations for
Y (7) with the aid of the following formula for ¥ (7) :
V() =1 (1, Z(v), w (3.8)
In this way we arrive at the system of difference equations
Y(v+p—Y@=0@+u Z(1)+u¥( Z(),n,pm—I Z(),p (3.9)
Next, eliminating Z (v) from the right side with the aid of (3. 5) and recalling (3. 7),
we finally obtain an equation of the form
Y(r+p—Y(®=pr YW (3.10)

We then repeat the entire procedure the required number of times, The order of the
right-hand side with respect to p doubles with each substitution, The possibility of actu-
ally effecting the substitutions depends on the possibility of solving systemn (3. 1) in gen-
eral form, since with subsequent substitutions the systems of differential equations are
readily integrable by the asymptotic method, Thus, to find the substitution for ¥ we
must solve the system of equations % —po, Y, p) 3.11)

In solving system (3, 11) we can alter the terms of order p in the right side, In system
(3.11) we can alter the terms of order 3 and higher, etc, We can exploit this freedom
of action in integrating systems (3, 1), (3,11),... We note that the method of substitu-~
tions is similar to that used by Kolmogorov and Arnol'd to solve differential equations
2]

Example 3,1, Letus find an approximate solution of the difference equation

2 (T4 p) — z (7) = pa? (1) (3.12)
Solving the ancillary differential equation
iz _ _E -
7 = C=1—!—z'£" L
we obtain an approximate solution for z. We then make the following substitutions in
the difference equation: y (1) z (1)
O=1T"7 @’ VO=1Tuwm (3.13)

This gives us our difference equation for ¥ (1) ,
y(t+w —y () =p* (0 [1 + @ — 1y (V) + p22 (m)]?

Solving the ancillary differe;tial equation .
Y y
v TP Ty (=) + pt

we obtain an approximate expression for y (7) ,

In(4 2
y(v)=c + pe?In (1 — ct) 4 pn%? [ln2(1 —c1) 4 B-(—l_!——{%::L:I + 0?3

Substituting y (7) into z (1) (3.13), we obtain a solution of Eq, (3,12) accurate to

within terms of order p® , inclusive,

4, Aiymptotic integration of essentially nonlinear oscillating
systems, Let us consider the following system of equations with the small parameter

W
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AL _Ft, X, F(t+2nX,w=F(¢ X, p (4.1)

We assume that the solutions of system (4, 1) are extendible in ¢, and that the right
side of F (¢, X, u) is differentiable the required number of times with respect to all of
its arguments in a sufficiently large domain. We also assume that the general solution

of the system X =@ Xpp), @O0 Xp=2X, (4.2)

satisfies the condition
o)) (t + 2m, X, 0) = D (¢, X,, 0) (4.3)

i, e, that all the solutions of system (4.1) become 2x-periodic for p = 0. An example
of such a system is the system in standard form
dX

- =W (¢, X, u, F(t+2n X, n)=F( X, N (4.4)

which is readily amenable to the use of asymptotic methods [3], All of its solutions are
constant and satisfy condition (4,3) for p = 0.

Let us introduce the notation X, = ® @un, X, p) (4.5)
By virtue of the periodicity of the right side of the system (4, 1), we have
Xp =@ 2, Xp,p), @@n, Xpp) =X, + 0 (4.6)
Finally, we can write the system of difference equations relating X, and X,,, as
Xnn — Xo =p¥ (Xp, 1) (n=012, ) (4.7)

w¥ (X, u) =0 C2n, X,,p) — X,

The actual construction of the vector function ¥ (X, 1) or the solution of (4, 2) for
¢ = 2m can be effected by various approximate procedures, Let us assume that system
(4.1) is completely integrable for & = 0 , This enables us to use the small parameter
method [4]. System of difference equations (1. 3) no longer contains T explicitly and is

of the form Z(@+up)—Z@p =p¥(EF N (4.8)
¥ (Z,p) =¥, (2) +p¥, () + 0¥, (D) + . -
The ancillary system of equations likewise does not contain T explicitly,
dZldt = S (Z, ) (4.9)
For T =np(n=0,1,2,...) the vector Z (T, B} assumes values which coincide
with the values of X ,assumed by solution (4,2) of system (4. 1) for ¢t = 2nn. Replacing
the independent variable in (4, 9) according to the formula
2nt = ut (4.10)

we arrive at the system of differential equations
dz
=2 SUZ, 1), S(Z, 1) = So(2) + pS1 (Z) + WS (Z) F ... (411)
The solutions of systems (4, 1) and (4. 11) coincide for ¢ = 2nx (n = 0, 1, 2, . . .).
The periodicity of system (4, 1) implies that if the values of Z, { correspond to the values
of X, ¢, then the values of Z, ¢ 4 25 correspond to the values of X, ¢t 4 2n. Hence,
X and Z are related by an expression periodic in ¢ with the period 25
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X=P(t2Zn, P{E+2n,2Z,p=P(@t2Zn (4.12)
P(t,Z’H)=Po(t1Z)+P'P1(t,Z)“|‘l*2P2 (t’Z)_I—"'

We can solve the equations of (4.12) for Z ,

Zz=Qt X, W, QU-+2r X,p)=0Q(@X,p) (4.13)
QL X, = Qo (&, X) +pQ (4 X) +p*Q (1, X) + ...

We can find relations (4, 12), (4, 13) by integrating systems (4, 1), (4, 11), It is simpler,
however, to attempt to find a substitution of the form (4. 12) directly, This substitution
reduces nonautonomous system of equations (4. 1) to an autonomous system in standard
form, For p = 0 we obtain

dPy(t, 2)

ot :F(t7 PO(tv Z)’ 0)7 PO(t7 Z)E(I)(tv Zv U) (4—14)
If system (4, 1) is integrable for p = 0, then, substituting (4. 12) and (4. 11) into (4.1),
we can determine P, Py, . . ., 8¢, 815 - -+ successively, The asymptotic character

of the resulting solutions follows from Theorem 1 [1],
Example 4,1, Letus find an approximate solution of the essentially nonlinear
first-order differential equation g,

g = *cosli —ux
by the asymptotic method, For p = O the equation is integrable and we have
c z
=T osmi C=T—ssnt’ z=c =0

We therefore seek our substitution (4, 12) in the form
z dz
T=Tfzsme TR D+, A =S 4.
Substituting these expressions into the differential equation, we obtain
3
50 (2) +E— (14 zsint)2 py(2, 2)]=—:—22sin ¢t

This yields expressions for sy (z), p; (¢, z),

z2cost
so(2)=—23, n(t, z):m
Integrating, we obtain the approximate solution
c ccost } .
r= - O(w)

e Losing T (e* 4 ¢ sin 1)
Note 4,1, Forsystem (4, 4) reduced to standard form substitution assurnes the
simpler form v _ 5 4+ up (s, Z, ), P(t+21,Z,w =P 2, 1) (4.15)

since the solutions of system (4, 4), (4. 11) intersect at the instants ¢ = 2xn and since
their derivatives are proportional to p. We can immediately make the substitution

X = Z 4 puPy (8, Z) -+ WP, (¢, Z) + pdP, (t, Z)+... (4.16)
which transforms nonautonomous system (4, 4) into autonomous system (4, 11), If we re-
quire that the solution Z () of system (4, 11) coincide with the solution of system (4. 1)
at the instants # = 2nn. then we can construct a unique ancillary system (4,11), The
use of ancillary autonomous system (4, 11) for asymptotic integration was first proposed
by Krylov and Bogoliubov [5, 6] and elaborated by Mitropol'skii {3, 7], Substitution(4,16)
constructed jointly with system (4, 11) leads to the asymptotic method of integration,
Hence, for systems of the form (4, 4) the asymptotic method of integration constitutes a
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particular, but practically convenient method of approximation in which the small-para-
meter method is applied to the method of point transformations, Neimark [8] pointed
this out in the case of the first approximation of the asymptotic method called the "aver-
aging method",

Note 4.2, The use of difference equations yields a method for the asymptotic inte-
gration of differential equations of the form

d_d}tizp(t, X, p, pb), F@+2m X, p, 0)=F(t X, pu,0) (4.17)

A detailed investigation of Eqs, (4. 17) containing the slow time p¢ was carried out by
Mitropol'skii [7].

Note 4,3, All of the analytical methods of investigating nonlinear oscillations w.ich
we examined, e, g, the reservation method, the method of slowly varying coefficients
(the Van der Pol method) [9], the method of equivalent linearization, the stroboscopic
method of Minorsky [10, 11], the Poincaré method [4], etc,, are reducible to the solution
of nonlinear difference equations which are usually of the form (1,1)., The use of the
general method of point transformations [12] has not yet received sufficient elaboration
for more complex cases, It leads to difference equations of the form

Xoyy = Xn + F(Xp, pn, ), F(Xp, 00, 0)520

which will not be investigated here,

5, Obtaining periodic solutions, The periodic solutions of system (4. 1)
correspond to the fixed points of mapping (4, 6). The initial vector X satisfies the sys-
tem of equations

¥ (Xo, 1) = o (Xo) + ¥y (Xoy + 0¥, (Xo) +- ... =0 (5.1)

The search for a periodic solution by asymptotic methods leads to ancillary system
(4.11). The constant solutions of system (4, 11) correspond to the periodic solutions of
system (4, 1), The initial vector X which determines the periodic solution satisfies the
system of equations

S (Xg, 1) = S, (Xo) 4 1Sy (Xo) + %S, (Xo) 400 =0 (5.2)

Formulas (2, 4)—(2.7) relating ¥ and S imply that Egs, (5. 1) and (5, 2) are equivalent,
For this reason, the periodic solutions provided by the asymptotic method and the method
of Poincaré [4] can be made to coincide with any degree of accuracy desired, This was
shown in [13] by direct computation for the first approximations, It is important to note
that, having constructed Eqs, (5. 2) defining the initial values for the periodic solution,
we can construct ancillary system (4, 11) without referring to system (4, 1), By virtue of
its uniqueness, system (4, 11) can be arrived at by the asymptotic method [5— 7], which
makes it possible to investigate the stability of the periodic solutions, The Poincaré
method can therefore be used to investigate transient processes, This has usually been
done in the neighborhood of the fixed point [12], Specifically, (2. 3),(2.4) yield the
approximate formula

S(Z, )= 1.5F (Z, p) — 0.5 (Z+ p¥ (Z, 1), p) -+ O (n?) =

Gq DY (z, p)
=¥ (Z, ) — 050 ZXL By (7 p) 1 0 () (5.3)
Example 5.1, Let us consider the stability of the solutions of the equation
b mlz = pF(t, z, & p), FF2 oz, =R e (54)

in the first approximation in the resonance case n = I, 2, 3,...
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Stipulating that
¥ = a, .t.:b, t=90

we arrive at the approximate solution

t‘l

Z(t):xo(t)—*—iSF . :
n (vs 2o(1), @0’ (1), p)sin n (¢ — 1) dv + O (u?)
]
Zo (t) = acosnt + bnlsin nt
Substituting in the value ¢ = 2n we obtain the new initial values
a=z@n)=a+pP(a, b)) +0W), b=z 2n)=0>b+pQ(ab) =0 ?
where 2n
P(a, b)=— —i- S F (v, zo(1), #'0(T), 0)sin nrdv

0
2:t
Q (a, b) =\ F (z, zp(7), %0 (1), 0) cos nt dv
b
The difference equations for the coordinates of the point of intersection of the integral
curve with the planes ¢t = 2nm are of the form

Appy — @p = WP (an, by) + 0 (u%, bn+1 — by = pQ (ay, by) + 0 (}12)
Hence, the differential equations for the slowly changing variables a, b assume the

form (4.11), 4 db
=R P@HFOW), == Q@ 0w (5.5)

If there exists a simple solution a = ay, & = b, of the equations
P(a, b)=0, Q(a, b)) =0
then Eq, (5.4) has a periodic solution, The stability of solutions in the first approxima-
tion is determined by the stability of system (5, 5) linearized for 2 = ay, b = by,

d — aP ,b aP 'b
CEES TN P CA P
d(b—b a3 , b 9 ' b
Cr20_ B 0QGnN (o 0N 44 o

The solutions are asymptotically stable if the roots of the characteristic equation

AP (as, by)/dag-- A AP (ao, bg)/dbg
BQ (ao, bo)/aao BQ (ao, bo)/abo——-

have negative real parts, This conclusion was arrived at in [4], p, 80. The first approxi-
mation using difference equations actually coincides with the stroboscopic method of
Minorsky [9, 10], who confines himself to the first approximation (as we are doing in
this example) and usually converts to polar coordinates on the phase plane, Quite natu-
rally, the first approximation of the asymptotic method [5— 7] (usually called the "ave-
raging method") leads to system (5. 5), as does the Van der Pol method [11], p. 76.

N lI:() (5.6)

8. The complex resonance case, Letus consider the quasilinear system
dX
G =AX+pF(, X, n), F(+2n X, p=F(¢ X, p)  (6.4)
We assume that all the solutions of the system are periodic with the period 21 for
p=20,i,e, that
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exp{A2n} =E (6.2)
Solving system (6. 1) with the initial vector X, we obtain the solution
t
X (1) = 4 Xo+ p\ AV F (1, 64T X, p)dr + O () (6.3)
6
System of difference equations (4, 7) becomes
Xna—Xp=p Y 4 F (1, ¢7 X5, 0)dv + O (p?) (6.4)
0

Equating the right side in (6. 4) to zero, we obtain equations for finding the initial
vector X, which determines the periodic solution, This periodic solution is asymptotically
stable if the solution Z = X, of the system of differential equations

dZ

2n
Ls M\ AT AT 6.5
2 _ 1 Se F (v, e 2, 0)dv (6.5)
is stable, 0

This solution is in turn stable if all the eigenvalues of the matrix of the Jacobian
27

J=D Se““ F(t, ¢** 2, 0) dv/DZ (6.6)
0
have negative real parts. If the matrix of (6.6) also has zero eigenvalues with element-
ary first-degree divisors, then the periodic solution of system (6, 1) is stable in the first
approximation, In doubtful cases the problem of stability can sometimes be resolved by
considering system (6, 5) directly,
Example 6,1, Let us investigate the stability of the periodic solution of the equa-

tion z° + z 4 pa?sint =0 (6.7)
Equations (5, 5) are of the form
da db
S=h@tmtow F=—Tatom (©.:8)

We obtain ay = 0, 3y, == 0 for the periodic solution, Equation (5,6) has a multiple
zero root, Application of the small-parameter method in its usual form [4] requires
computation of subsequent approximations, On the other hand, it is sufficient to consider
the integral curves of system (6, 8) on the plane ab to conclude that the solution ¢ = 0,
b = 0 of system (6, 8) (i. e, the periodic solution x = 0 of Eq, (6. 7)) is unstable, The
solution z = 0 stable in the first approximation is unstable when subsequent approxima-
tions are taken into account,

7. The integral stability criterion (ina form different from that used
in [14~16]). Let us consider the oscillations of a system described by the generalized
coordinates ¢q,,...,4,. We assume for simplicity that conversion to the principal coor-
dinates is possible for the unperturbed system, The kinetic potential is of the form

. 1<, . .
L(g;, ¢, 0t,p) =T — 1l = 2 (¢:2—0:2¢;%) + nhy(q;, ¢;, ot, p) (.1)

=1

Let us assume that p > 0, where [ is a small parameter, and that the periodicity
condition
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lgiv 'i.7® 231;, =1 - i‘ (5]
is tulfilled, (i, 95, © + 27, p) = l(q,, 4, O, p)

We shall consider the nearly-resonance case when the perturbation frequency  and
the proper frequencies miof the unperturbed system (y = 0) are in rational ratio, We

assume that o, p; p;®

i .

= Sy O vI=0, wi=p (=t...0 (2
Here the p, are nonnegative integers and Vis a sufficiently large positive number.

We obtain the following expression for the kinetic potential:

n
. 1 : .
L (g% ot, 1) = &2 (4% — %) + pl (i, 45", ot 1) (7.3)
i=1

. Y — (1“2
(g, g5y of, p)=1y(0,00,000) + 171 Y == (v — o))
i=1
A1l of the solutions of the unperturbed system (u = 0) with the kinetic potential L
(7. 3) are periodic with the common period 7 = 2x/Nw@ 1. The Lagrange differential

equations now become .
d ol al b; . 7.4
- 2 —_— e — — Vi = — :1,2,...,":) (')
q, L v;*q; = p’[dt a(]i' aqi]’ i N (
In the zeroth approximation we obtain the generating solution
gio (1) = a, cos vt + (b, / v;) sin v;¢ (7.5)

Here a, b, are the initial values of ¢, (¢), ¢, (¢) for £ = (. Let us compute the
new initial values a;;, b;; after the period T'. Applying the small parameter method,
we obtain ! a1

werd al ] : . X
() = i (1) — —\ |- o= ——=— | sinv;t —T)dT+ O 7.6
4 (1) = o () v¢§[dt g ) SV (DT O (7.6)
The expression in square brackets in the integrand is to be computed for the generating
solution @;q (T), @i (T). We indicate this by means of the subscript ;. We now have

the point transformation (7.7)
ay = a; + TP, (a;, b;) + O (), by =b;, + pT Q, (aj, by) + O (W)

where

T
1 d ol ol . 2nN
Py (a]-, bJ) :Tvi—T—Sol:-d—;Bq—i.—a-qi}OSlnvdeT, T = Py (78)

T
1 d ol ol
Qilay, b)) = — - S [-d?—aqi' — % }0 cosvitdr, wu=2~0
0
Integration by parts makes the extraintegral terms vanish because of the periodicity
of the integrands, and we have

T . T
1 al 8l sSmwvT 1 al 7
(a;, b; =-————S[——.cosv~r ] dr=———S[ dv (7.9
Pi(a;, ]) T ) aq, v 3, v, o T ) 3, JO (7.9)
T T
1 ¢ al . al 1 al
Q; (a;, by) = ——T—S[aq—.vismvir—i——én— cosvirJ dt = —T—S [7} dt
) L9, 7 0 p i o

Let us introduce the ancillary function
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T T

1 .
A(aj, bj) = - SL(qw (%), gio’ (v), 0r)dr = L S [1]od (7.10)
0
The above equation is fulfilled, since the relation
T n
V3 100 (© — v (Mo dv = 0 (7.41)
0 i=1
is fulfilled for the generating solution,

Here A (a;, b;) is the average value of the kinetic potential L of the perturbed sys-
tem computed for unperturbed solution (7. 5). Since /V in 7’ can be arbitrarily large, we
can assume that 1 T

A (@, b) = lim 7 S L (g (v), gio’ (v), o7, pydr, A=0() (7.12)
—00
0.

As our generating solution ¢jp (T) we take the expressions defined by formulas (7. 5),
These define harmonic oscillations with frequencies v, rationally commensurate with
the perturbation frequency w. Mapping (7. 7) becomes

OA oA ,
an=a;—T—+0W@), bu=0b+ T =~ 0(u?) (7.13)
i i
The corresponding system of differential equations (4, 11) is canonical in the first

0

approximation, de; A . db, A 9 744
—dt‘——__ath*—o(p‘)v dt —_aal'—{'—o(l") ('1)
The equations for determining the periodic solution in the first approximation are
9A (a;, b) 9A (a;, b)) _
e 0 T, 0 st (7.15)

Hence, the initial values a;,, b;, which determine the periodic solution are the coor-
dinates of the fixed point for the function A (@;, b;). Equations (7, 14) have the energy

integral A (a;, b;) = const + O {p?) (7.16)

The surfaces with Eq, (17, 18) are closed in the neighborhood of the fixed point a, big
in the phase space of the variables ay, b; if the function A (a;, b;) has either a mini-
mum or a maximum at this point, Otherwise surfaces (7, 16) are not closed,

Theorem, (The integral stability criterion). Let us compute the
average value A (a;, b;) of the kinetic potential of the perturbed system (p =~ 0)
along the periodic solution of the unperturbed system (i = 0) as a function of the ini-
tial values g, b;. If the function A has either 2 maximum or 2 minimum at the point
@io big , then this point determines the periodic solution stable in the first approxima-
tion, The other fixed points require special consideration,

Example 7.1. Let us consider the system with the kinetic potential

Lz, =, t) = Y/ (2 — 2% — pha?) -+ paz sin 2t
The corresponding differential equation is a Mathieu linear differential equation,
24 (1 4+ pA + 2ucos2tyzr = 0 (7.17)
For p = 0 this equation has the solution
Zo (f) = acost + bsint

Let us compute the average value of the kinetic potential for this solution,
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on
1 .
A= 2—ng L (%o (v), =o' (T), r)dr:%—[—(x+1)a2+(1—x)b2]
0
At the fixed point @ = 0, » = § the function A {(a, b) has a minimum for A < —1

and a maximum for A> 1. For —1 < A < 1 the point ¢ = 0, b = 0 is a saddle point,
Hence, for | A | > 1 we have a stable zero solution of Eq, (7.17) and for | Al >1an
unstable zero solution, For A = -4 1 the fixed point is defined ambiguously, which im-
plies the existence of a family of periodic solutions, The implications of this example
agree with the known results of [17],

Note 7.1, The integral criterion can be broadened considerably to cover systems
canonical in the zeroth approximation, It bears a close relationship to perturbation the-
ory [18]. Let us formulate one of the implications without proof or elaboration , We con-
sider a canonical system of differential equations with the Hamiltonian # ,

which is almost periodic in ¢ and doubly differentiable with respect to all of its argu-
ments, Let the generating canonical system

0H . 0H,
q.'=a'—°. Py=—7%g Ho=H(t g5 pp0) (s=1,...,n) (7.19)
Py

8
have the generating solution
9, ="qg (¢t a;, bj), Py =Py, ¢ e, bJ) (7.20)
where q;, b; are the initial values of 9 pjfor ¢ = 0. Taking a;, b; as our new variables
and assuming that the averaging method [19] is applicable to the system of equations
dog O(H—Hy) dbs = S(MH—H) (7.21)
dt = Obg ’ dt — dag ' ’
we conclude that the solution of the system with the Hamiltonian # (7. 18) is stable
with respect to the parameters gy, b;, if the function A (a;, b;) ,

T—0

1 n
. 1 3 .
A (aj, b)) =lim - S [ Z;psoq o H (a4 Pip }.L)] dt (7.22)
0o 5=

has a minimum or a maximum for these values of aj, by .

The stability criterion is also applicable to the analysis of the stability of almost-
periodic solutions, The parameters can bé arbitrary constants which do not necessarily
coincide with the initial conditions,

Example 7.2, Let us use the integral criterion to find the stability condition under
combination resonance of the solutions of the system

@ 02q — 2ugacos0t =0, " + 0, — 2uqi cosot =0, @ =+ O,

The system is canonical with the Hamiltonian

H (q;, pjy &) = Yolp? + 02q’ + p? + 0,203 + 2uqig. cosot

We choose our generating solution

1= Ajcos(vit +ay), go = Aycos(vyt +ay), 01— vi= 0 (), ©—vy= 0u)
such that the exact relation

Vit V=0, ©= 0 0 — (0 — Vi) — (W — Vy)
is fulfilled,

The average value of the kinetic potential is of the form
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A (A 05 = Yy [A (@2 — vi?) -+ 204,14, 008 (o + a,) -+ 4@, — vi?)]
If

(@12 — 1% (07 — v,?) > p

then 2 maximum or a minimum occurs at the point 4; = 4, = 0 corresponding to the
zero solution,

The above condition can be simplified into

4010501 — V1) (@3 — Vvp) > 1 + O@P)
Varying v, v,, we obtain the largest stability domain for

®; — V1= Wy — Vy
The stability domain is defined by the inequality
U
Ow— 01— 0 —
l ol V o102
Note 7,3. We note that this result is correct despite the fact that the averaging
method is not directly applicable [20] to Egs, (7.21) obtained in the course of its deriva-

tion, We refer the reader to interesting paper [21] , which concerns averaging in canon-
ical systems, The example is analyzed by another method in [22].

8, Stability of systems with friction, Let the system considered in Sect,
7 be acted on by friction with the Rayleigh dispersion function

F=1y(eiq? + e,¢,2 + ... & €,827),
Equations (7. 4) now become

d d  dl
9;" + R Vi =—p [d—z g, 5;;] (82)

Making substitution (7. 5) and converting first to difference equations and then to dif-
ferential equations, we obtain the first-approximation equations

da; dA  8R db;

8j>0 (81)

da;  9A db; 0A IR g
dt T Tah v Al da T ob (8.3)
where T

n
.1 ¢ . 2 2
A (a5, b)) :lenooTS L(54 (D), 0; (.07, Wdr,  Ra; o)=L S eg(ap +b9) G4
0 i=1
Equations (8. 3) enable us to introduce the transient processes, In order to obtain the
almost-periodic or periodic solutions we must equate the right sides of (8, 3) to zero,
To investigate the stability of the resulting aj,, b, in the first approximation, we intro-

duce the matrices P, Q, R, I with elements computed at the point ajo, bjo
. JA

. __0PA 0A per
P = da\da, Ty = da, b Tis = ab, db_ lks:T ks (8.5)
Here 0y, is the Kronecker delta: 0, = 1, 8;5 = 0 (A == ).
The characteristic equation of the system in variations is of the form
AME -L--Q R
Det +L+Q =0 (8.6)
—P AE+L—Q

In this block matrix £ represents an identity matrix and Q' the matrix adjoint to ¢.
In the case of simple resonances when only one of the characteristic frequencies of the

system for p == 0 is equal to the double perturbation frequency, the necessary and suffi-
cient condition of asymptotic stability follows from the inequality
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Det Q ; L \l >0 (8.7)

Q'+ L
Example 8,1. Let us investigate the stability of oscillations with the kinetic poten-

tial L, L=1;(2% 4 y? — 0222 — 0.2?) + peay -+ yg sin of, o ~ 20,

and the Rayleigh dispersion function

= n(e1z? + &97), & >0, & >0

We obtain the following differential equations of the zeroth approximation:
z” + 0.25mw%z = 0, ¥+ w2y = ¢ sin ot

As our generating solution we take the expressions
o 2b o b, | q .
r=acos 5t ISin gt y=a2c05 ot oo SI Ot g sin ot

From formula (8.4) for 0, =+ »,, 20, 5= 0, @, 3= 0 we obtain

2 [ @2 by2 L2 b
A= (T o)+ 5 (15 )+ roror

¥ 2 0% | T 20 (0, — oY)
Stability condition (8, 7) becomes
p,2822 ((02 J— 40)12) }L2812 p,‘lc2q2 ‘J
Z [ e Sy P T ) B
After some simplifying operations it becomes the inequality

u26292
4(0 —20)* + P’ — GrigE gy > 0
As is clear from this example, it is not necessary to construct the complete differen-
tial equations of motion in order to investigate stability, This makes the integral crite~
rion a convenient means of analyzing the stability of the oscillations of complex mechan-
ical systems,

8., The canonical difference equations, Let usapply the asymptotic
method [5-7] to the canonical system of differential equations with the small parameter

fe qs'=uaps, ps':—u%:, H=H(q; p,t) (s=1,...,n) (9.1)

where the Hamiltonian /4 is differentiable a sufficient number of times and is 2s- perio-
dicin ¢,
We begin by introducing the general solution of system (9, 1),
g, = s (8 aj, bj, B, Ps = s (¢, aj, by, 1) (5=t ...n) (9.2)

with the initial conditions

s = g, Py = b, T =0 (s=1,...n)

Next we find the mapping given by solution (9, 2) after the period 2sx,
Gair = Dy (g by 1)y Dsar = ¥ (@jk0 bjir 1) (k=071,2,..) (9.3)
@, (aj, by 1) = 0 1, ap by )y ¥, (@5, bjy w) = W, (2, @, by, 1)

Since system (9, 1) is canonical, we have the relative integral invariant (see [23], p.

302 i "
‘ S D YD, = SZ bada.y (9.4)

Cppq =1 Cy s=1

Here (' is a closed contour in 2n-dimensional space obtainable from Cy by means of
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k successive mappings (9, 3). Difference equations (9. 3) satisfying condition (9. 4) will
be called "canonical” equations, Let us introduce an ancillary system of differential
equations of the form (4. 9) for difference equations (9. 3). Its solution for T = kp (b =
=0, 1, 2, . .) nas a relative integral invariant, Taking the limit as p — U , we infer
from this that the ancillary system hasna relative integral invariant of the form

L
Z' Pidqy,
k=1
and is therefore canonical, Making substitution (4, 10), we obtain
. OH (u;,v;,1) . OH (), 7 ,p)
uszp,_la’?_’__, vs:—-u—————a;——— (s=1,...,n) (9.9)
s s

This means that there exists a canonical transformation of variables
k 13
9, = U+ Z w Uk (ujv Vi t)v Ds = U + 2 w Vk (uJ" Vi, t) (96)
k k

which transforms canonical system (9, 1) into canonical autonomous system (9. 5), Thus,
by applying the asymptotic method to the canonical system we can obtain the ancillary
autonomous system in canonical form, This fact is proved in a different way in [24].

Note 9,1. Itis possible to seek a function W (g;, u;, ¢, 4} which determines the
canonical transformation in accordance with the formulas

ow ow
— —— —_ 9.7
vs“'aus’ b, = 8qs (s=1,....n) .7
and is such that the function #, does not contain the time ¢ ,
oW  oH,_
M=H—%, = ©8)

10, Complex resonance in autonomous systems, Let us consider the
system with 7 - 1 degrees of freedom

z, 4oz, =puf; (2, 25)  (i=0,1,...,n) ©,50 (10.1)
where the ratio of any two frequencies ®;is a rational number, By replacing the inde-
pendent variable we can reduce system (10, 1) to the case where all the ® ; are positive
integers with the largest common divisor equal to unity, Let us find the solution under
the initial conditions

To=1u, 2 =0, & =y, x =3z (=1 ...n,t=0 (10.2)

13 i
For p = 0 all the solutions of (10, 1) are periodic with the period 2;. Let us find
(for p > 0) a mapping which is effected along the trajectories of system (10, 1) from
the instant ¢ = 0 to an instant {*close to 2x at whichay,” = 0. It is more convenient
in practice to find the preliminary values of the variables at the instant 2. Knowing
that for 4 =0 in the zeroth approximation we have

2,
Zoo (t) = ucosmyt, i (t) = y,; cos w;t + m—’ sinwt  (i=1,..., n) (10.3)
we can apply the small-parameter method to obtain :
z, () = i () +uzy (&) + 0 @) @=0,1,...,n) (10.4)
i
1

{1 @0 (), @ (@) sin o, (1 — ) dv
0

Using the ellipsis to denote terms of order u? and higher, we obtain the following values
for t = 2m:

Ty (t) =

@
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To (2) = u + pxy 2n) + .. ., zy (20) = pzy Cm) + ... (10.5)
x, 2n) =y, + pz, @) + .., z (2n) = z, + paxy (2n) +

(it=1,...,n)
Now let us move along the trajectories to the instant ¢* at which &y (¢7) = 0. To this

end we convert from (10, 1) to the first-order system

C= — ok + W, (2 w)

T = Uy Uy =
Let us take uyas the independent variable, This yields the system
de, . u; du, _ = (ni?xi—k—pfl(xj, u].) (10,(3)
dug _wo‘lx0+pfo(xj,u‘)

dug — — o+ pfo(z;, u;)
Solving this approximately under initial conditions (10, 5) up to the value u, = 0

— 2y (2m) .. (10.7)

we obtain

zo (%) = u -+ Wrgy (20) ..., 2o’ (1*) =0, t* =2n +—
xol(Dn)] +.

z () =y + u[xn (21) + 5
2 ()= 5+ g (2)— m}fj 2 2] +

Formulas (10, 7) define the point transformation of the values of u, Y;, 2; into the
analogous values at the instant ¢* which itself depends on u, y,, z,. Let us convert to an
ancillary system of differential equations of the form (4, 11), From (10, 4), (10, 7) we

obtain the first-approximation equations
97

% = 2m0 S[fo]smmordr + O (n?)
b
dy; : Z.
d? - 'E' 5{”1 i O:)IT —[fo] = Z)O;:)or }d‘t + O (n?) (10.8)
[}
(i;i Sl[f‘t] oS BT — [fo] cos 0)01:} dv -+ O (p?)

In this fashion we have replaced the system of initial order 2n + 1 by an autonomous
system of order 2n 4 2. The new system can be conveniently handled by approximate
methods by virtue of the small factor in its right sides, The variable s denotes the local
time along each trajectory, It is related to ¢ by the differential equation

2mn
(10.9)

ey S[fo]coswofdf+0( u2)

ds "nu) "

0

The expressions in square brackets are computed for generating solution (10, 3)

The periodic solution can be found by equating the right sides of system (10, 8) to zero,
We shall investigate stability by means of equations in variations, which in this case are
linear differential equations with constant coefficients,

Example 10,1, For the system of differential equations

z" -+ miry = —pzla’, p>0, mEn

. . 2.
zy" + nlry = urirg,

Egs. (10, 8), (10, 9) become
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du  pu ds dy p dz p
@ =g W EmT), p=1+0),  gr=—gvt =g
The above system becomes readily integrable once we have made the substitutions
R . dp_p dg B
p=u?, g=y*+2m> p=-5pg, GF=—"g P

Without solving the equations we note that there are two families of periodic solutions,

the stable famil
W2y =0, 2 =ycosmt+ zm™lsinmt, p =0

and the unstable family
zg = ucosni, =0, q=70
All of the solutions become the stable periodic solution in such a way that
ptag=0C w4+ g4 2m?=
The equations yield the approximate solution
2o(1) = C1 (1 4 Coe®5*C® Y2 cos (nt 4 Cy)

n{)=C(1+ G o—0-58Cit )—‘/z sin (mt 4 Cg)
containing four arbitrary constants,
Resonance in system of differential equations (10, 1) facilitates their analysis,
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ON THE MOTION OF A HOLLOW BODY FILLED WITH VISCOUS
LIQUID ABOUT ITS CENTER OF MASS IN
A POTENTIAL BODY-FORCE FIELD

PMM Vol, 33, W3, 1969, pp.431-440
A, I, KOBRIN

Moscow
(Received (Decemb%r 2, 1968)

We consider the motion of a hollow solid body whose cavity is completely filled with a
viscous liquid, assuming that the product of the Reynolds and Strouhal characteristic num-
bers for the flow of the viscous fluid in the cavity is small, We then show that the prob-
lem can be handled by methods used to investigate systems with a small parameter
accompanying the higher derivatives and develop an algorithm for constructing an asymp-
totic expansion of the corresponding simultaneous system of Navier-Stokes and ordinary



